Mesures de risques

Mesures de risques

Shengyu ZHENG

Dans cet article, Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023) présente les mesures de risques basées sur la distribution statistique des rentabilités d’une position de marché, ce qui est une approche possible pour mesurer les risques (comme expliqué dans mon article Catégorie de mesures de risques).

Les mesures de risques basées sur la distribution statistique sont des outils largement utilisés pour la gestion des risques par de nombreux de participants du marché, dont les traders, les teneurs de marché, les gestionnaires d’actifs, les assureurs, les institutions réglementaires et les investisseurs.

Ecart-type / Variance

La variance (moment d’ordre deux de la distribution statistique) est une mesure de la dispersion des valeurs par rapport à la moyenne. La variance est définie par

Var(X) = σ 2 = 𝔼[(X-μ)2]

Par construction, la variance est toujours positive (ou nulle pour une variable aléatoire constante).

En finance, l’écart-type (racine carrée de la variance) mesure la volatilité des actifs financiers. Un écart-type (ou une variance élevée) indique une dispersion plus importante, et donc un risque plus important, ce n’est pas apprécié par les investisseurs qui ont de l’aversion au risque. L’écart-type (ou la variance) est un paramètre clef dans la théorie moderne du portefeuille de Markowitz.

La variance a un estimateur non biaisé donné par

Ŝ2 = (∑ni=1(xi – X̄)2)/(n-1)

Value at Risque (VaR)

La Value at Risque (VaR, parfois traduite comme valeur en enjeu) est une notion classique pour mesurer les risques de perte d’un actif. Elle correspond au montant de perte d’une position qui ne devrait être dépassé qu’avec une probabilité donnée sur un horizon précisé, ou autrement dit, au montant de la pire perte attendue sur un horizon de temps pour un certain niveau de confiance. Elle est essentiellement le quantile de la probabilité donnée de la distribution de perte (rendement négatif).

Dans le langage mathématique, la VaR est définie comme :

VaRα = inf{y ∈ : ℙ[L>y] ≤ 1 – α} = inf{ y ∈ : ℙ[L ≤ y] ≥ α }

VaRα = qα(F) ≔ F(α)

α est la probabilité donnée ; L est une variable aléatoire de montant de perte ; F est la distribution cumulative de perte (rendement négatif), ce qui est continue et strictement croissante ; F est l’inverse de F.

Les organismes financiers se servent assez souvent de cette mesure pour la rapidité et la simplicité des calculs. Toutefois, elle présente certaines lacunes. Elle n’est pas une mesure cohérente. Cela dit, l’addition des VaRs de 2 portefeuilles aurait aucun sens. À part cela, basée sur une hypothèse gaussienne, elle ne tient pas compte de la gravité et la possibilité des évènements extrêmes, tant que les distributions du marché financier sont, pour la plupart, leptokurtiques.

Expected Shortfall (ES)

L’Expected shortfall (ES) est la perte espérée pendant N jours conditionnellement au fait de se situer dans la queue (1 – α) de la distribution des gains ou des pertes (N est l’horizon temporel et α est le niveau de confiance). Autrement dit, elle est la moyenne des pertes lors d’un choc qui est pire que α% cas. L’ES est donc toujours supérieure à la VaR. Elle est souvent appelée VaR conditionnelle (CVaR).

ESα = ∫ 1α (VaRβ(L) dβ)/(1 – α)

En comparaison de la VaR, ES est capable de montrer la gravité de perte dans des cas extrêmes. Ce point est primordial pour la gestion moderne de risques qui souligne la résilience surtout en cas d’extrême.

La VaR a été préférée par les participants du marché financier depuis longtemps, mais les défauts importants présentés ci-dessus ont occasionné des reproches, notamment face aux souvenances des crises majeures. L’ES, rendant compte des évènements extrêmes, tend désormais à s’imposer.

Stress Value (SV)

La Stress Value (SV) est un concept similaire à la VaR. Comme la VaR, la SV est définie comme un quantile. Pour la SV, la probabilité associée au quantile est proche de 1 (par exemple, un quantile de 99.5% pour la SV, en comparaison d’un quantile de 95% pour la VaR habituelle). La SV décrit plus précisément les pertes extrêmes.

L’estimation paramétrique de SV normalement s’appuie sur la théorie de valeurs extrêmes (EVT), alors que celle de VaR est basée sur une distribution gaussienne.

Programme R pour calculer les mesures de risques

Vous pouvez télécharger ci-dessous un programme R qui permet de calculer les mesures de risques d’une position de marché (construite à partir d’indices d’actions ou d’autres actifs).

Mesures_de_risque

Voici est une liste des symboles d’actif (“tickers”) que nous pouvons intégrer dans le programme R.
Download the ticker list to calculate risk measures

Example de calcul des mesures de risque de l’indice S&P 500

Ce programme nous permet de calculer rapidement des mesures de risque pour des actifs financiers dont les données historiques peuvent être téléchargées sur le site Yahoo! Finance. Je vous présente une analyse de risque pour l’indice S&P 500.

En saisissant la date de début comme 01/01/2012 et la date d’arrêté comme 01/01/2022, ce programme est en mesure de calculer les mesures de risque pour toute la période considérée.

Vous trouverez ci-dessous les mesures de risque calculées pour toute la période : la volatilité historique, la volatilité conditionnelle sur les 3 derniers mois, VaR, ES et SV.

risk mesures S&P 500

Autres articles sur le blog SimTrade

   ▶ Shengyu ZHENG Catégories de mesures de risques

   ▶ Shengyu ZHENG Moments de la distribution

   ▶ Shengyu ZHENG Extreme Value Theory: the Block-Maxima approach and the Peak-Over-Threshold approach

   ▶ Youssef LOURAOUI Markowitz Modern Portfolio Theory

Ressources

Articles académiques

Merton R.C. (1980) On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8:4, 323-361.

Hull J. (2010) Gestion des risques et institutions financières, Pearson, Glossaire français-anglais.

Données

Yahoo! Finance

A propos de l’auteur

Cet article a été écrit en février 2023 par Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023).

Catégories de mesures de risques

Catégories de mesures de risque

Shengyu ZHENG

Dans cet article, Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023) présente les catégories de mesures de risques couramment utilisées en finance.

Selon le type d’actif et l’objectif de gestion de risques, on se sert de mesures de risques de différentes catégories. Techniquement, on distingue trois catégories de mesures de risques selon l’objet statistique utilisé : la distribution statistique, la sensibilité et les scénarios. Généralement, les méthodes des différentes catégories sont employées et combinées, en constituant un système de gestion de risques qui facilite de différents niveaux des besoins managériaux.

Approche basée sur la distribution statistique

Les mesures modernes de risques s’intéressent à la distribution statistiques de la variation de valeur d’une positon de marché (ou de la rentabilité de cette position) à un horizon donné.

Les mesures se divise principalement en deux types, globales et locales. Les mesures globales (variance, beta) rendent compte de la distribution entière. Les mesures locales (Value-at-Risk, Expected Shortfall, Stress Value) se focalisent sur les queues de distribution, notamment la queue où se situent les pertes.

Cette approche n’est toutefois pas parfaite. Généralement un seul indicateur statistique n’est pas suffisant pour décrire tous les risques présents dans la position ou le portefeuille. Le calcul des propriétés statistiques et l’estimation des paramètres sont basés sur les données du passé, alors que le marché financier ne cesse d’évoluer. Même si la distribution reste inchangée entre temps, l’estimation précise de distribution n’est pas évidente et les hypothèses paramétriques ne sont pas toujours fiables.

Approche basée sur les sensibilités

Cette approche permet d’évaluer l’impact d’une variation d’un facteur de risques sur la valeur ou la rentabilité du portefeuille. Les mesures, telles que la duration et la convexité pour les obligations et les Grecques pour les produits dérivés, font partie de cette catégorie.

Elles comportent aussi des limites, notamment en termes d’agrégation de risques.

Approche basée sur les scénarios

Cette approche considère la perte maximale dans tous les scénarios générés sous les conditions de changements majeurs du marché. Les chocs peuvent s’agir, par exemple, d’une hausse de 10% d’un taux d’intérêt ou d’une devise, accompagnée d’une chute de 20% des indices d’actions importants.

Un test de résistance est un dispositif souvent mis en place par les banques centrales afin d’assurer la solvabilité des acteurs importants et la stabilité du marché financier. Un test de résistance, ou en anglicisme un « stress test », est un exercice consistance à simuler des conditions économiques et financières extrêmes mais effectivement plausibles, dans le but d’étudier les conséquences majeures apportées surtout aux établissements financiers (par exemple, les banques ou les assureurs), et de quantifier la capacité de résistance de ces établissements.

Autres article sur le blog SimTrade

▶ Shengyu ZHENG Mesures de risques

▶ Shengyu ZHENG Moments de la distribution

▶ Shengyu ZHENG Extreme Value Theory: the Block-Maxima approach and the Peak-Over-Threshold approach

▶ Youssef LOURAOUI Markowitz Modern Portfolio Theory

Resources

Academic research (articles)

Aboura S. (2009) The extreme downside risk of the S&P 500 stock index. Journal of Financial Transformation, 2009, 26 (26), pp.104-107.

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Annals of mathematics, 423–453.

Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985) “Estimation of the generalized extreme-value distribution by the method of probability-weighted moments” Technometrics, 27(3), 251–261.

Longin F. (1996) The asymptotic distribution of extreme stock market returns Journal of Business, 63, 383-408.

Longin F. (2000) From VaR to stress testing : the extreme value approach Journal of Banking and Finance, 24, 1097-1130.

Longin F. et B. Solnik (2001) Extreme correlation of international equity markets Journal of Finance, 56, 651-678.

Mises, R. v. (1936). La distribution de la plus grande de n valeurs. Rev. math. Union interbalcanique, 1, 141–160.

Pickands III, J. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1), 119– 131.

Academic research (books)

Embrechts P., C. Klüppelberg and T Mikosch (1997) Modelling Extremal Events for Insurance and Finance.

Embrechts P., R. Frey, McNeil A. J. (2022) Quantitative Risk Management, Princeton University Press.

Gumbel, E. J. (1958) Statistics of extremes. New York: Columbia University Press.

Longin F. (2016) Extreme events in finance: a handbook of extreme value theory and its applications Wiley Editions.

Other materials

Extreme Events in Finance

Rieder H. E. (2014) Extreme Value Theory: A primer (slides).

A propos de l’auteur

Cet article a été écrit en janvier 2023 par Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023).

Moments d’une distribution statistique

Moments d’une distribution statistique

Shengyu ZHENG

Dans cet article, Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023) présente les quatre premiers moments d’une distribution statistique : la moyenne, la variance, la skewness et la kurtosis.

Variable aléatoire

Une variable aléatoire est une variable dont la valeur est déterminée d’après la réalisation d’un événement aléatoire. Plus précisément, la variable (X) est une fonction mesurable depuis un ensemble de résultats (Ω) à un espace mesurable (E).

X : Ω → E

X est une variable aléatoire réelle à condition que l’espace mesurable (E) soit, ou fasse partie de, l’ensemble des nombres réels (ℝ).

Je présente un exemple avec la rentabilité d’un investissement dans l’action Apple. La figure 1 ci-dessous représente la série temporelle de la rentabilité journalière de l’action Apple sur la période allant de novembre 2017 à novembre 2022.

Figure 1. Série temporelle de rentabilités de l’action Apple.
Série de rentabilité
Source : calcul par l’auteur (données : Yahoo Finance).

Figure 2. Histogramme des rentabilités de l’action Apple.
Histogramme de rentabilité
Source : calcul par l’auteur (données : Yahoo Finance).

Moments d’une distribution statistique

Le moment d’ordre r ∈ ℕ est un indicateur de la dispersion de la variable aléatoire X. Le moment ordinaire d’ordre r est défini, s’il existe, par la formule suivante :

mr = 𝔼 (Xr)

Nous avons aussi le moment centré d’ordre r défini, s’il existe, par la formule suivante :

cr = 𝔼([X-𝔼(X)]r)

Moment d’ordre un : la moyenne

Définition

La moyenne ou l’espérance mathématique d’une variable aléatoire est la valeur attendue en moyenne si la même expérience aléatoire est répétée un grand nombre de fois. Elle correspond à une moyenne pondérée par probabilité des valeurs que peut prendre cette variable, et elle est donc connue comme la moyenne théorique ou la vraie moyenne.

Si une variable X prend une infinité de valeurs x1, x2,… avec les probabilités p1, p2,…, l’espérance de X est définie comme :

Μ = m1= 𝔼(X) = ∑i=1pixi

L’espérance existe à condition que cette somme soit absolument convergente.

Estimation statistique

La moyenne empirique est un estimateur de l’espérance. Cet estimateur est sans biais, convergent (selon la loi des grands nombres), et distribué normalement (selon le théorème centrale limite).

A partir d’un échantillon de variables aléatoire réelles indépendantes et identiquement distribuées (X1,…,Xn), la moyenne empirique est donc :

X̄ = (∑ni=1xi)/n

Pour une loi normale centrée réduite (μ = 0 et σ = 1), la moyenne est égale à zéro.

Moment d’ordre deux : la variance

Définition

La variance (moment d’ordre deux) est une mesure de la dispersion des valeurs par rapport à sa moyenne.

Var(X) = σ 2 = 𝔼[(X-μ)2]

Elle exprime l’espérance du carré de l’écart à la moyenne théorique. Elle est donc toujours positive.

Pour une loi normale centrée réduite (μ = 0 et σ = 1), la variance est égale à un.

Estimation statistique

A partir d’un échantillon (X1,…,Xn), nous pouvons estimer la variance théorique à l’aide de la variance empirique :

S2 = (∑ni=1(xi – X̄)2)/n

Cependant, cet estimateur est biaisé, parce que 𝔼(S2) = (n-1)/(n) σ2. Nous avons donc un estimateur non-biaisé Š2 = (∑ni=1(xi – X̄)2)/(n-1)

Application en finance

La variance correspond à la volatilité d’un actif financier. Une variance élevée indique une dispersion plus importante, et ce n’est pas favorable du regard des investisseurs rationnels qui présentent de l’aversion au risque. Ce concept est un paramètre clef dans la théorie moderne du portefeuille de Markowitz.

Moment d’ordre trois : la skewness

Définition

La skewness (coefficient d’asymétrie en bon français) est le moment d’ordre trois, défini comme ci-dessous :

γ1 = 𝔼[((X-μ)/σ)3]

La skewness mesure l’asymétrie de la distribution d’une variable aléatoire. On distingue trois types de distributions selon que la distribution est asymétrique à gauche, symétrique, ou asymétrique à droite. Un coefficient d’asymétrie négatif indique une asymétrie à gauche de la distribution, dont la queue gauche est plus importante que la queue droite. Un coefficient d’asymétrie nul indique une symétrie, les deux queues de la distribution étant aussi importante l’une que l’autre. Enfin, un coefficient d’asymétrie positif indique une asymétrie à droite de la distribution, dont la queue droite est plus importante que la queue gauche.

Pour une loi normale, la skewness est égale à zéro car cette loi est symétrique par rapport à la moyenne.

Moment d’ordre quatre : la kurtosis

Définition

La kurtosis (coefficient d’acuité en bon français) est le moment d’ordre quatre, défini par :

β2 = 𝔼[((X-μ)/σ)4]

Il décrit l’acuité d’une distribution. Un coefficient d’acuité élevé indique que la distribution est plutôt pointue en sa moyenne, et a des queues de distribution plus épaisses (fatter tails en anglais).

Le coefficient d’une loi normale est de 3, autrement dit, une distribution mésokurtique. Au-delà de ce seuil, une distribution est appelée leptokurtique. Les distributions présentes au marché financier sont principalement leptokurtique, impliquant que les valeurs anormales et extrêmes sont plus fréquentes que celles d’une distribution gaussienne. Au contraire, un coefficient d’acuité de moins de 3 indique une distribution platykurtique, dont les queues sont plus légères.

Pour une loi normale, la kurtosis est égale à trois.

Exemple : distribution des rentabilités d’un investissement dans l’action Apple

Nous donnons maintenant un exemple en finance en étudiant la distribution des rentabilités de l’action Apple. Dans les données récupérées de Yahoo! Finance pour la période allant de novembre 2017 à novembre 2022, on se sert de la colonne du cours de clôture pour calculer les rentabilités journalières. Nous utilisons des fonctions Excel afin de calculer les quatre premiers moments de la distribution empirique des rentabilités de l’action Apple comme indiqué dans la table ci-dessous.

Moments de l’action Apple

Pour une distribution normale standard (centrée réduite), la moyenne est de zero, la variance est de 1, le skewness est de zéro, et le kurtosis est de 3. À comparaison avec une distribution normale, la distribution de rentabilité de l’action Apple a une moyenne légèrement positive. Cela signifie qu’à long terme, la rentabilité de l’investissement dans cet actif est positive. Son skewness est négatif, indiquant l’asymétrie vers la gauche (les valeurs négatives). Son kurtosis est supérieur de 3, ce qui indique que les extrémités sont plus épaisses que la distribution normale.

Fichier Excel pour calculer les moments

Vous pouvez télécharger le ficher Excel d’analyse des moments de l’action Apple en suivant le lien ci-dessous :

Télécharger le fichier Excel pour analyser les moments de la distribution

Autres article sur le blog SimTrade

▶ Shengyu ZHENG Catégories de mesures de risques

▶ Shengyu ZHENG Mesures de risques

Ressources

Articles académiques

Robert C. Merton (1980) On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8:4, 323-361.

Données

Yahoo! Finance Données de marché pour l’action Apple

A propos de l’auteur

Cet article a été écrit en janvier 2023 par Shengyu ZHENG (ESSEC Business School, Grande Ecole Program – Master in Management, 2020-2023).

Standard deviation

Standard deviation

Jayati WALIA

In this article, Jayati WALIA (ESSEC Business School, Grande Ecole Program – Master in Management, 2019-2022) presents an overview of standard deviation and its use in financial markets.

Definition

The standard deviation is a measure that indicates how much data scatter around the mean. The idea is to measure how an observation deviates from the mean on average./p>

Mathematical formulae

The first step to compute the standard deviation is to compute the mean. Considering a variable X, the arithmetic mean of a data set with N observations, X1, X2 … XN, is computed as:

img_arithmetic_mean

In the data set analysis, we also consider the dispersion or variability of data values around the central tendency or the mean. The variance of a data set is a measure of dispersion of data set values from the (estimated) mean and can be expressed as:

variance

Note that in the above formula we divide by N-1 because the mean is not known but estimated (usual case in finance). If the mean is known with certainty (when dealing the whole population not a sample), then we divide by N.

A problem with variance, however, is the difficulty of interpreting it due to its squared unit of measurement. This issue is resolved by using the standard deviation, which has the same measurement unit as the observations of the data set (such as percentage, dollar, etc.). The standard deviation is computed as the square root of variance:

standard deviation

A low value standard deviation indicates that the data set values tend to be closer to the mean of the set and thus lower dispersion, while a high standard deviation indicates that the values are spread out over a wider range indication higher dispersion.

Measure of volatility

For financial investments, the X variable in the above formulas would correspond to the return on the investment computed on a given period of time. We usually consider the trade-off between risk and reward. In this context, the reward corresponds to the expected return measured by the mean, and the risk corresponds to the standard deviation of returns.

In financial markets, the standard deviation of asset returns is used as a statistical measure of the risk associated with price fluctuations of any particular security or asset (such as stocks, bonds, etc.) or the risk of a portfolio of assets (such as mutual funds, index mutual funds or ETFs, etc.).

Investors always consider a mathematical basis to make investment decisions known as mean-variance optimization which enables them to make a meaningful comparison between the expected return and risk associated with any security. In other words, investors expect higher future returns on an investment on average if that investment holds a relatively higher level of risk or uncertainty. Standard deviation thus provides a quantified estimate of the risk or volatility of future returns.

In the context of financial securities, the higher the standard deviation, the greater is the dispersion between each return and the mean, which indicates a wider price range and hence greater volatility. Similarly, the lower the standard deviation, the lesser is the dispersion between each return and the mean, which indicates a narrower price range and hence lower volatility for the security.

Example: Apple Stock

To illustrate the concept of volatility in financial markets, we use a data set of Apple stock prices. At each date, we compute the volatility as the standard deviation of daily stock returns over a rolling window corresponding to the past calendar month (about 22 trading days). This daily volatility is then annualized and expressed as a percentage.

Figure 1. Stock price and volatility of Apple stock.

price and volatility for Apple stock
Source: computation by the author (data source: Bloomberg).

You can download below the Excel file for the calculation of the volatility of stock returns. The data used are for Apple for the period 2020-2021.

ownload the Excel file to compute the volatility of stock returns

Related posts on the SimTrade blog

▶ Jayati WALIA Quantitative Risk Management

▶ Jayati WALIA Value at Risk

▶ Jayati WALIA Brownian Motion in Finance

Useful resources

Wikipedia Standard Deviation

About the author

The article was written in November 2021 by Jayati WALIA (ESSEC Business School, Grande Ecole Program – Master in Management, 2019-2022).