The variance-covariance method for VaR calculation

Jayati WALIA

In this article, Jayati WALIA (ESSEC Business School, Grande Ecole – Master in Management, 2019-2022) presents the variance-covariance method for VaR calculation.

Introduction

VaR is typically defined as the maximum loss which should not be exceeded during a specific time period with a given probability level (or ‘confidence level’). VaR is used extensively to determine the level of risk exposure of an investment, portfolio or firm and calculate the extent of potential losses. Thus, VaR attempts to measure the risk of unexpected changes in prices (or return rates) within a given period.

The two key elements of VaR are a fixed period of time (say one or ten days) over which risk is assessed and a confidence level which is essentially the probability of the occurrence of loss-causing event (say 95% or 99%). There are various methods used to compute the VaR. In this post, we discuss in detail the variance-covariance method for computing value at risk which is a parametric method of VaR calculation.

Assumptions

The variance-covariance method uses the variances and covariances of assets for VaR calculation and is hence a parametric method as it depends on the parameters of the probability distribution of price changes or returns.

The variance-covariance method assumes that asset returns are normally distributed around the mean of the bell-shaped probability distribution. Assets may have tendency to move up and down together or against each other. This method assumes that the standard deviation of asset returns and the correlations between asset returns are constant over time.

VaR for single asset

VaR calculation for a single asset is straightforward. From the distribution of returns calculated from daily price series, the standard deviation (σ) under a certain time horizon is estimated. The daily VaR is simply a function of the standard deviation and the desired confidence level and can be expressed as:

img_VaR_single_asset

Where the parameter ɑ links the quantile of the normal distribution and the standard deviation: ɑ = 2.33 for p = 99% and ɑ = 1.645 for p = 90%.

In practice, the variance (and then the standard deviation) is estimated from historical data.
img_VaR_asset_variance
Where Rt is the return on period [t-1, t] and R the average return.

Figure 1. Normal distribution for VaR for CAC40

img_SimTrade_normal_distribution_VaR

Source: computation by the author (data source: Bloomberg).

You can download below the Excel file for the VaR calculation with the variance-covariance method. The two parameters of the normal distribution (the mean and standard deviation) are estimated with historical data from the CAC 40 index.

Download the Excel file to compute the variance covariance method to VaR calculation

VaR for a portfolio of assets

Consider a portfolio P with N assets. The first step is to compute the variance-covariance matrix. The variance of returns for asset X can be expressed as:

Variance

To measure how assets vary with each other, we calculate the covariance. The covariance between returns of two assets X and Y can be expressed as:

Covariance

Where Xt and Yt are returns for asset X and Y on period [t-1, t].

Next, we compute the correlation coefficients as:

img_correlation_coefficient

We calculation the standard deviation of portfolio P with the following formula:

img_VaR_std_dev_portfolio

img_VaR_std_dev_portfolio_2

Where wi corresponds to portfolio weights of asset i.

Now we can estimate the VaR of our portfolio as:

img_portfolio_VaR

Where the parameter ɑ links the quantile of the normal distribution and the standard deviation: ɑ = 2.33 for p = 99% and ɑ = 1.65 for p = 95%.

Advantages and limitations of the variance-covariance method

Investors can estimate the probable loss value of their portfolios for different holding time periods and confidence levels. The variance–covariance approach helps us measure portfolio risk if returns are assumed to be distributed normally. However, the assumptions of return normality and constant covariances and correlations between assets in the portfolio may not hold true in real life.

Useful resources

Jorion P. (2007) Value at Risk, Third Edition, Chapter 10 – VaR Methods, 274-276.

Related posts on the SimTrade blog

   ▶ Walia J. Quantitative Risk Management

   ▶ Walia J. Value at Risk

   ▶ Walia J. The historical method for VaR calculation

About the author

The article was written in December 2021 by Jayati WALIA (ESSEC Business School, Grande Ecole – Master in Management, 2019-2022).

This entry was posted in Contributors, Financial techniques and tagged , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published.

*

code